Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27

Author:

Baetens Margot12,Legrain Christianne3,Boyen Anne12,Glansdorff Nicolas312

Affiliation:

1. Vlaams Interuniversitair Instituut voor Biotechnologie, Emile Grysonlaan 1, B-1070 Brussel, Belgium

2. Microbiologie, Vrije Universiteit Brussel, Emile Grysonlaan 1, B-1070 Brussel, Belgium

3. Research Institute CERIA-COOVI, Emile Grysonlaan 1, B-1070 Brussel, Belgium

Abstract

An arginine biosynthetic gene cluster, argC-argJ, of the extreme thermophilic bacterium Thermus thermophilus HB27 was isolated by heterologous complementation of an Escherichia coli acetylornithinase mutant. The recombinant plasmid (pTHM1) conferred ornithine acetyltransferase activity to the E. coli host, implying that T. thermophilus uses the energetically more economic pathway for the deacetylation of acetylornithine. pTHM1 was, however, unable to complement an E. coli argA mutant and no acetylglutamate synthase activity could be detected in E. coli argA cells containing pTHM1. The T. thermophilus argJ-encoded enzyme is thus monofunctional and is unable to use acetyl-CoA to acetylate glutamate (contrary to the Bacillus stearothermophilus homologue). Alignment of several ornithine acetyltransferase amino acid sequences showed no obvious pattern that could account for this difference; however, the monofunctional enzymes proved to have shorter N-termini. Sequence analysis of the pTHM1 3.2 kb insert revealed the presence of the argC gene (encoding N-acetylglutamate-5-semialdehyde dehydrogenase) upstream of the argJ gene. Alignment of several N-acetylglutamate-5-semialdehyde dehydrogenase amino acid sequences allowed identification of two strongly conserved putative motifs for cofactor binding: a putative FAD-binding site and a motif reminiscent of the NADPH-binding fingerprint. The relationship between the amino acid content of both enzymes and thermostability is discussed and an effect of the GC content bias is indicated. Transcription of both the argC and argJ genes appeared to be vector-dependent. The argJ-encoded enzyme activity was twofold repressed by arginine in the native host and was inhibited by ornithine. Both upstream of the argC gene and downstream of the argJ gene an ORF with unknown function was found, indicating that the organization of the arginine biosynthetic genes in T. thermophilus is new.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3