Fluoroquinolone resistance does not facilitate phage Φ13 integration or excision in Staphylococcus aureus

Author:

Leinweber Helena1,Sieber Raphael N.2,Bojer Martin S.1,Larsen Jesper2,Ingmer Hanne1ORCID

Affiliation:

1. Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark

2. Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark

Abstract

Prophages of the ΦSa3int family are commonly found in human-associated strains of Staphylococcus aureus where they encode factors for evading the human innate immune system. In contrast, they are usually absent in livestock-associated methicillin-resistant S. aureus (LA-MRSA) strains where the phage attachment site is mutated compared to the human strains. However, ΦSa3int phages have been found in a subset of LA-MRSA strains belonging to clonal complex 398 (CC398), including a lineage that is widespread in pig farms in Northern Jutland, Denmark. This lineage contains amino acid changes in the DNA topoisomerase IV and the DNA gyrase encoded by grlA and gyrA, respectively, which have been associated with fluoroquinolone (FQ) resistance. As both of these enzymes are involved in DNA supercoiling, we speculated that the mutations might impact recombination between the ΦSa3int phage and the bacterial chromosome. To examine this, we introduced the FQ resistance mutations into S. aureus 8325-4attBLA that carry the mutated CC398-like bacterial attachment site for ΦSa3int phages. When monitoring phage integration and release of Φ13, a well-described representative of the ΦSa3int phage family, we did not observe any significant differences between the FQ-resistant mutant and the wild-type strain. Thus our results suggest that mutations in grlA and gyrA do not contribute to the presence of the ΦSa3int phages in LA-MRSA CC398.

Funder

H2020 Excellent Science

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3