Subtype I BK polyomavirus strains grow more efficiently in human renal epithelial cells than subtype IV strains

Author:

Nukuzuma Souichi1,Takasaka Tomokazu2,Zheng Huai-Ying32,Zhong Shan2,Chen Qin2,Kitamura Tadaichi2,Yogo Yoshiaki2

Affiliation:

1. Department of Microbiology, Kobe Institute of Health, Kobe, Hyogo 650-0046, Japan

2. Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan

3. Japanese Foundation for AIDS Prevention, Tokyo 105-0001, Japan

Abstract

BK polyomavirus (BKPyV) is ubiquitous in human populations, infecting children without obvious symptoms and persisting in the kidney. BKPyV isolates have been classified into four subtypes (I–IV) using either serological or genotyping methods. In general, subtype I occurs most frequently, followed by subtype IV, with subtypes II and III rarely detected. As differences in growth capacity in human cells possibly determine the proportion of the four subtypes of BKPyV in human populations, here the growth properties of representative BKPyV strains classified as subtype I or IV in renal proximal tubule epithelial cells (HPTE cells) of human origin were analysed. HPTE cells were transfected with four and three full-length BKPyV DNAs belonging to subtypes I and IV, respectively, and cultivated in growth medium. Virus replication, detected using the haemagglutination assay, was observed in all HPTE cells transfected with subtype I BKPyV DNAs, whereas it was markedly delayed or not detected in those transfected with subtype IV BKPyV DNAs. It was confirmed that the transfected viral DNAs induced virus replication in HPTE cells. Furthermore, it was found that BKPyVs with archetypal transcriptional control regions replicated in HPTE cells, with only the occasional emergence of variants carrying rearranged transcriptional control regions. Essentially the same results as described above were obtained with renal epithelial cells derived from whole kidney. Thus, it was concluded that subtype I BKPyV replicates more efficiently than subtype IV BKPyV in human renal epithelial cells, supporting the hypothesis that growth capacity in human cells is related to the proportion of BKPyV subtypes in human populations.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3