Antiviral effect of dehydroepiandrosterone on Japanese encephalitis virus infection

Author:

Chang Chia-Che1,Ou Yen-Chuan2,Raung Shue-Ling3,Chen Chun-Jung31

Affiliation:

1. Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan

2. Division of Urology, Taichung Veterans General Hospital, No. 160, Section 3, Taichung-Gang Road, Taichung 40705, Taiwan

3. Department of Education and Research, Taichung Veterans General Hospital, No. 160, Section 3, Taichung-Gang Road, Taichung 40705, Taiwan

Abstract

Japanese encephalitis virus (JEV), which causes neurological disorders, completes its life cycle and triggers apoptotic cell death in infected cells. Dehydroepiandrosterone (DHEA), an adrenal-derived steroid, has been implicated in protection against neurotoxicity and protection of animals from viral-induced encephalitis, resulting in an increased survival rate of the animals. Currently, the mechanisms underlying the beneficial effects of DHEA against the virus are largely unknown. In this study, DHEA suppression of JEV replication and virus-induced apoptosis in murine neuroblastoma (N18) cells was investigated. It was found that DHEA suppressed JEV-induced cytopathic effects, JEV-induced apoptotic cell death and JEV propagation in a concentration-dependent manner. Antiviral activity was more efficient in cultures treated with DHEA immediately after viral adsorption compared with that in cultures receiving delayed administration after adsorption or transient exposure before adsorption. JEV-induced cytotoxicity was accompanied by the inactivation of extracellular signal-regulated protein kinase (ERK). Inactivation of ERK by JEV infection was reversed by DHEA. When cells were treated with the ERK inhibitor U0126, DHEA lost its antiviral effect. Activation of ERK by anisomycin mimicked the action of DHEA in suppressing JEV-induced cytotoxicity. DHEA-related compounds, such as its sulfate ester (DHEAS) and pregnenolone, were unable to suppress JEV-induced cytotoxicity and ERK inactivation. The hormone-receptor antagonists ICI 182780 and flutamide failed to abrogate the antiviral effect of DHEA. These findings suggest that the antiviral effect of DHEA is not linked directly to the genomic steroid-receptor pathways and suggest that the signalling pathways of ERK play a role in the antiviral action of DHEA.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3