An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi

Author:

Carroll James A.1,Stewart Philip E.2,Rosa Patricia2,Elias Abdallah F.3,Garon Claude F.1

Affiliation:

1. Rocky Mountain Microscopy Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA

2. Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA

3. Institut für Mikrobiologie und Hygiene, Charité Universitätsklinikum, Campus Charité Mitte Dorotheenstrasse 96, 10117 Berlin, Germany

Abstract

Borrelia burgdorferi regulates genes in response to a number of environmental signals such as temperature and pH. A green fluorescent protein (GFP) reporter system using the ospC, ospA and flaB promoters from B. burgdorferi B31 was introduced into infectious clonal isolates of strains B31 and N40 to monitor and compare gene expression in response to pH and temperature in vitro. GFP could be assayed by epifluorescence microscopy, immunoblotting or spectrofluorometry and was an accurate reporter of target gene expression. It was determined that only 179 bp 5′ of ospC was sufficient to regulate the reporter gfp in vitro in response to pH and temperature in B. burgdorferi B31. The loss of linear plasmid (lp) 25, lp28-1, lp36 and lp56 had no effect on the ability of B. burgdorferi B31 to regulate ospC in response to pH or temperature. The amount of OspC in N40 transformants was unaffected by changes in pH or temperature of the culture medium. This suggests that regulation of gene expression in response to pH and temperature may vary between these two B. burgdorferi strains.

Publisher

Microbiology Society

Subject

Microbiology

Reference39 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3