Identification and functional expression of ctaA, a P-type ATPase gene involved in copper trafficking in Trametes versicolor

Author:

Uldschmid Andreas1,Dombi Renate1,Marbach Karin1

Affiliation:

1. Institute for Biochemistry, Ludwig Maximilians University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany

Abstract

Here the identification and characterization of a gene encoding a copper-trafficking enzyme, ctaA (copper-transporting ATPase), from the basidiomycete Trametes versicolor are described. This P-type copper ATPase gene has two alleles, differing primarily in the length of the second, unusually long intron, and encodes a 983 aa protein with 40 % sequence identity to yeast Ccc2p. Overexpression of ctaA in yeast grown in the presence of copper led to a 15-fold increase in laccase yields, while overexpression of ctaA and tahA, a previously identified copper homeostasis gene of T. versicolor, was additive, leading to a 20-fold increase in laccase production. In T. versicolor, overexpression of ctaA and tahA led to an eightfold increase in laccase expression, and a cotransformant still expressed laccase at 3000 μM copper when hardly any laccase activity is detected in the wild-type strain. Apparently, at low to moderate levels of copper tahA and ctaA overexpression disturbs the normal hierarchy of copper distribution, resulting in more being directed to the Golgi, while with high copper amounts that normally switch on the copper detoxification processes, tahA and ctaA gene products seem to out-compete the metallothionein copper chaperones, meaning laccase is still supplied with copper. These results may lead to a better understanding of copper trafficking and the hierarchy of copper distribution in the cell, and possibly be useful for constructing laccase-overproducing strains for biotechnological purposes.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3