Isolation of a bacteriophage specific for CS7-expressing strains of enterotoxigenic Escherichia coli

Author:

Begum Y. A.1,Chakraborty S.1,Chowdhury A.1,Ghosh A. N.2,Nair G. B.2,Sack R. B.3,Svennerholm A.-M.4,Qadri F.1

Affiliation:

1. International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh

2. National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India

3. Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

4. Department of Medical Microbiology and Immunology, The Sahlgrenska Academy at Göteborg University, Box 435, S-40530 Göteborg, Sweden

Abstract

EnterotoxigenicEscherichia coli(ETEC) is the most common bacterial cause of childhood diarrhoea in Bangladesh. Among the virulence factors of ETEC, toxins and colonization factors (CFs) play a major role in pathogenesis. UnlikeVibrio cholerae, the relationship between ETEC and ETEC-specific phages is poorly understood and the possible role of ETEC phages in the evolution of ETEC strains in the environment is yet to be established. This study was designed specifically to isolate phages that are specific for ETEC virulence factors. Among the 49 phages isolated from 12 different surface water samples, 13 were tested against 211 ETEC strains collected from clinical and environmental sources. One phage, designated IMM-001, showed a significant specificity towards CS7 CF as it attacked all the CS7-expressing ETEC. Electron microscopic analyses showed that the isolated phage possessed an isomeric hexagonal head and a long filamentous tail. An antibody blocking method and phage neutralization assay confirmed that CS7 pilus is required for the phage infection process, indicating the role of CS7 fimbrial protein as a potential receptor for IMM-001. In summary, this study showed the presence of a lytic phage in environmental water that is specific for the CS7 CF of ETEC.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3