Characterization of a cyclophosphamide-induced murine model of immunosuppression to study Acinetobacter baumannii pathogenesis

Author:

Manepalli Swetha1,Gandhi Jay A.1,Ekhar Vaibhav V.1,Asplund Melissa B.1,Coelho Carolina23,Martinez Luis R.431

Affiliation:

1. Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, USA

2. PhD Program in Experimental Biology and Biomedicine, Centre for Neuroscience and Cell Biology of Coimbra and Institute of Microbiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

3. Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA

4. Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA

Abstract

Acinetobacter baumannii is a Gram-negative bacterium that opportunistically infects critically ill hospitalized patients with breaches in skin integrity and airway protection, leading to significant morbidity and mortality. Considering the paucity of well-established animal models of immunosuppression to study A. baumannii pathogenesis, we set out to characterize a murine model of immunosuppression using the alkylating agent cyclophosphamide (CYP). We hypothesized that CYP-induced immunosuppression would increase the susceptibility of C57BL/6 mice to developing A. baumannii-mediated pneumonia followed by systemic disease. We demonstrated that CYP intensified A. baumannii-mediated pulmonary disease, abrogated normal immune cell function and led to altered pro-inflammatory cytokine release. The development of an animal model that mimics A. baumannii infection onset in immunosuppressed individuals is crucial for generating novel approaches to patient care and improving public health strategies to decrease exposure to infection for individuals at risk.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3