A novel Saclayvirus Acinetobacter baumannii phage genomic analysis and effectiveness in preventing pneumonia

Author:

Li Shibin,Wei Bingdong,Xu Le,Cong Cong,Murtaza Bilal,Wang Lili,Li Xiaoyu,Li Jibin,Xu Mu,Yin Jiajun,Xu YongpingORCID

Abstract

Abstract Acinetobacter baumannii, which is resistant to multiple drugs, is an opportunistic pathogen responsible for severe nosocomial infections. With no antibiotics available, phages have obtained clinical attention. However, since immunocompromised patients are often susceptible to infection, the appropriate timing of administration is particularly important. During this research, we obtained a lytic phage vB_AbaM_P1 that specifically targets A. baumannii. We then assessed its potential as a prophylactic treatment for lung infections caused by clinical strains. The virus experiences a period of inactivity lasting 30 min and produces approximately 788 particles during an outbreak. Transmission electron microscopy shows that vB_AbaM_P1 was similar to the Saclayvirus. Based on the analysis of high-throughput sequencing and bioinformatics, vB_AbaM_P1 consists of 107537 bases with a G + C content of 37.68%. It contains a total of 177 open reading frames and 14 tRNAs. No antibiotic genes were detected. In vivo experiments, using a cyclophosphamide-induced neutrophil deficiency model, tested the protective effect of phage on neutrophil-deficient rats by prophylactic application of phage. The use of phages resulted in a decrease in rat mortality caused by A. baumannii and a reduction in the bacterial burden in the lungs. Histologic examination of lung tissue revealed a decrease in the presence of immune cells. The presence of phage vB_AbaM_P1 had a notable impact on preventing A. baumannii infection, as evidenced by the decrease in oxidative stress in lung tissue and cytokine levels in serum. Our research offers more robust evidence for the early utilization of bacteriophages to mitigate A. baumannii infection. Key points A novel Saclayvirus phage infecting A. baumannii was isolated from sewage. The whole genome was determined, analyzed, and compared to other phages. Assaying the effect of phage in preventing infection in neutrophil-deficient models.

Funder

Xiaoyu Li

Yongping Xu

Jiajun Yin

Jibin Li

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, Edalatmand A, Petkau A, Syed SA, Tsang KK, Baker SJC, Dave M, McCarthy MC, Mukiri KM, Nasir JA, Golbon B, Imtiaz H, Jiang X, Kaur K, Kwong M, Liang ZC, Niu KC, Shan P, Yang JYJ, Gray KL, Hoad GR, Jia B, Bhando T, Carfrae LA, Farha MA, French S, Gordzevich R, Rachwalski K, Tu MM, Bordeleau E, Dooley D, Griffiths E, Zubyk HL, Brown ED, Maguire F, Beiko RG, Hsiao WWL, Brinkman FSL, Van Domselaar G, McArthur AG (2023) CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 51(D1):D690–D699. https://doi.org/10.1093/nar/gkac920

2. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12:10. https://doi.org/10.1186/1471-2164-12-402

3. Almasaudi SB (2018) Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J Biol Sci 25(3):586–596. https://doi.org/10.1016/j.sjbs.2016.02.009

4. Asif M, Alvi IA, Tabassum R, Rehman SU (2020) TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period. Arch Virol 165(2):419–424. https://doi.org/10.1007/s00705-019-04483-8

5. Bailly-Bechet M, Vergassola M, Rocha E (2007) Causes for the intriguing presence of tRNAs in phages. Genome Res 17(10):1486–1495. https://doi.org/10.1101/gr.6649807

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3