Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer

Author:

Prakash Om1,Green Stefan J.21,Jasrotia Puja1,Overholt Will A.1,Canion Andy1,Watson David B.3,Brooks Scott C.3,Kostka Joel E.1

Affiliation:

1. Earth, Ocean, and Atmospheric Science Department, Florida State University, Tallahassee, FL, USA

2. DNA Services Facility, University of Illinois at Chicago, Chicago, IL, USA

3. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Bacterial strains 2APBS1T and 116-2 were isolated from the subsurface of a nuclear legacy waste site where the sediments are co-contaminated with large amounts of acids, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first member of the genus Rhodanobacter shown to be capable of complete denitrification. Cells of strain 2APBS1T and 116-2 were Gram-negative, non-spore-forming rods, 3–5 µm long and 0.25–0.5 µm in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth of 30 °C and pH 6.5; they were able to tolerate up to 2.0 % NaCl, although growth improved in its absence. Strains 2APBS1T and 116-2 contained fatty acid and quinone (ubiquinone-8; 100 %) profiles that are characteristic features of the genus Rhodanobacter . Although strains 2APBS1T and 116-2 shared high 16S rRNA gene sequence similarity with Rhodanobacter thiooxydans LCS2T (>99 %), levels of DNA–DNA relatedness between these strains were substantially below the 70 % threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1T and 116-2 are considered to represent a single novel species of the genus Rhodanobacter , for which the name Rhodanobacter denitrificans sp. nov. is proposed. The type strain is 2APBS1T ( = DSM 23569T = JCM 17641T).

Funder

US Department of Energy

US Department of Energy, Office of Science, Biological and Environmental Research, Subsurface Biogeochemistry Research Program

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3