The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC

Author:

Azachi Malkit1,Henis Yigal1,Shapira Roni2,Oren Aharon3

Affiliation:

1. Department of Plant Pathology and Microbiology, and Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel

2. Department of Biochemistry and Food Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel

3. Division of Microbial and Molecular Ecology, Institute of Life Sciences and Moshe Shilo Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

To investigate the mechanism of formaldehyde tolerance in Gram-negative bacteria, two formaldehyde-tolerant strains, Escherichia coli VU3695 and Halomonas sp. MAC (DSM 7328), and formaldehyde-sensitive revertants obtained by ethidium bromide or novobiocin treatment were studied. The presence of high levels of formaldehyde dehydrogenase activity alone proved insufficient to confer tolerance to high formaldehyde concentrations, as shown by the high activity displayed by formaldehyde-sensitive revertants of Halomonas MAC. Moreover, formaldehyde-tolerant strains also proved to be tolerant to high concentrations of acetaldehyde and glutaraldehyde, which are not oxidized by formaldehyde dehydrogenase. Treatment with sublethal concentrations of EDTA rendered the resistant strains highly sensitive to formaldehyde without affecting the activity of formaldehyde dehydrogenase. Comparison of the outer membrane proteins of formaldehyde-resistant strains with those of their sensitive revertants showed the presence of at least one additional high molecular mass protein in the tolerant strains. It is concluded that formaldehyde tolerance in the bacteria studied depends on the composition and structure of the outer membrane.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3