Abstract
A number of polyacrylamide gel systems and solubilization procedures were studied to define the number and nature of "major" polypeptide bands in the outer membrane of Pseudomonas aeruginosa. It was shown that five of the eight major outer membrane proteins were "heat modifiable" in that their mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined by the solubilization temperature. Four of these heat-modifiable proteins had characteristics similar to protein II of the Escherichia coli outer membrane. Addition of lipopolysaccharide subsequent to solubilization caused reversal of the heat modification. The other heat-modifiable protein, the porin protein F, was unusually stable to sodium dodecyl sulfate. Long periods of boiling in sodium dodecyl sulfate were required to cause conversion to the heat-modified form. This was demonstrated both with outer membrane-associated and purified lipopolysaccharide-depleted protein F. Furthermore, lipopolysaccharide treatment had no effect on the mobility of heat-modified protein F. Thus it is concluded that protein F represents a new class of heat-modifiable protein. It was further demonstrated that the electrophoretic mobility of protein F was modified by 2-mercaptoethanol and that the 2-mercaptoethanol and heat modification of mobility were independent of one another. The optimal conditions for the examination of the outer membrane proteins of P. aeruginosa by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis are discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
429 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献