Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination

Author:

Prakash Om1,Gihring Thomas M.1,Dalton Dava D.1,Chin Kuk-Jeong2,Green Stefan J.1,Akob Denise M.1,Wanger Greg3,Kostka Joel E.1

Affiliation:

1. Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA

2. Department of Biology, Georgia State University, Atlanta, GA 30303, USA

3. J. Craig Venter Institute, San Diego, CA 92121, USA

Abstract

An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32T, was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92–98 % 16S rRNA gene and 75–81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4T, according to 16S rRNA gene sequence similarity, strain FRC-32T showed a DNA–DNA relatedness value of 21 %. Cells of strain FRC-32T were Gram-negative, non-spore-forming, curved rods, 1.0–1.5 μm long and 0.3–0.5 μm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 °C and pH 6.7–7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32T conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32T was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32T is considered to represent a novel species of the genus Geobacter, for which the name Geobacter daltonii sp. nov. is proposed. The type strain is FRC-32T (=DSM 22248T=JCM 15807T).

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3