Microbial Utilization to Nurture Robust Agroecosystems for Food Security

Author:

Qadir Muhammad1ORCID,Hussain Anwar1ORCID,Iqbal Amjad2ORCID,Shah Farooq34ORCID,Wu Wei4ORCID,Cai Huifeng5

Affiliation:

1. Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan

2. Department of Food Science & Technology, Abdul Wali Khan University, Mardan 23200, Pakistan

3. Department of Agronomy, Abdul Wali Khan University, Mardan 23200, Pakistan

4. School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China

5. Agricultural Ecology and Resources Protection Station of Hainan Province, Haikou 570228, China

Abstract

In the context of anthropogenic evolution, various sectors have been exploited to satisfy human needs and demands, often pushing them to the brink of deterioration and destruction. One such sector is agrochemicals, which have been increasingly employed to achieve higher yields and bridge the gap between food supply and demand. However, extensive and prolonged use of chemical fertilizers most often degrades soil structure over time, resulting in reduced yields and consequently further exacerbating the disparity between supply and demand. To address these challenges and ensure sustainable agricultural production, utilization of microorganisms offers promising solutions. Hence, microorganisms, particularly effective microorganisms (EMs) and plant growth-promoting microbes (PGPMs), are pivotal in agricultural biomes. They enhance crop yields through active contribution to crucial biological processes like nitrogen fixation and phytohormone synthesis, making vital nutrients soluble and acting as natural enemies against pests and pathogens. Microbes directly enhance soil vigor and stimulate plant growth via the exudation of bioactive compounds. The utilization of EMs and PGPMs reduces the need for chemical inputs, leading to lower costs and reduced environmental pollutants. Furthermore, beneficial soil microflora produces growth-related metabolites and phytohormones that augment plant growth and support stress resilience. Microbes also help plants tolerate various abiotic stresses, including metal stress, salt stress, and drought stress, through various mechanisms. Understanding the interactions and activities of microorganisms provides valuable insights into their potential use to manage stress in plants. Thus, by leveraging the full potential of microorganisms, we can develop healthier agroecosystems that contribute sustainably to meet the growing global food demands.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3