Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state

Author:

Kayser Anke1,Weber Jan1,Hecht Volker1,Rinas Ursula1

Affiliation:

1. Biochemical Engineering Division, GBF – National Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany

Abstract

The Escherichia coli K-12 strain TG1 was grown at 28 °C in aerobic glucose-limited continuous cultures at dilution rates ranging from 0·044 to 0·415 h−1. The rates of biomass formation, the specific rates of glucose, ammonium and oxygen uptake and the specific carbon dioxide evolution rate increased linearly with the dilution rate up to 0·3 h−1. At dilution rates between 0·3 h−1 and 0·4 h−1, a strong deviation from the linear increase to lower specific oxygen uptake and carbon dioxide evolution rates occurred. The biomass formation rate and the specific glucose and ammonium uptake rates did not deviate that strongly from the linear increase up to dilution rates of 0·4 h−1. An increasing percentage of glucose carbon flow towards biomass determined by a reactor mass balance and a decreasing specific ATP production rate concomitant with a decreasing adenylate energy charge indicated higher energetic efficiency of carbon substrate utilization at higher dilution rates. Estimation of metabolic fluxes by a stoichiometric model revealed an increasing activity of the pentose phosphate pathway and a decreasing tricarboxylic acid cycle activity with increasing dilution rates, indicative of the increased NADPH and precursor demand for anabolic purposes at the expense of ATP formation through catabolic activities. Thus, increasing growth rates first result in a more energy-efficient use of the carbon substrate for biomass production, i.e. a lower portion of the carbon substrate is channelled into the respiratory, energy-generating pathway. At dilution rates above 0·4 h−1, close to the wash-out point, respiration rates dropped sharply and accumulation of glucose and acetic acid was observed. Energy generation through acetate formation yields less ATP compared with complete oxidation of the sugar carbon substrate, but is the result of maximized energy generation under conditions of restrictions in the tricarboxylic acid cycle or in respiratory NADH turnover. Thus, the data strongly support the conclusion that, in aerobic glucose-limited continuous cultures of E. coli TG1, two different carbon limitations occur: at low dilution rates, cell growth is limited by cell-carbon supply and, at high dilution rates, by energy-carbon supply.

Publisher

Microbiology Society

Subject

Microbiology

Reference42 articles.

1. Are growth rates of Escherichia coli in batch cultures limited by respiration?;Andersen;J Bacteriol,1980

2. The energy charge of the adenylate pool as a regulatory parameter;Atkinson;Interaction with feedback modifiers. Biochemistry,1968

3. The growth of micro-organisms in relation to their energy supply;Bauchop;J Gen Microbiol,1960

4. A simple and reliable method for the determination of cellular RNA content;Benthin;Biotechnol Tech,1991

5. The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase;Boonstra;J Bacteriol,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3