Microbial pathway thermodynamics: structural models unveil anabolic and catabolic processes

Author:

Ebenhöh OliverORCID,Ebeling JoshaORCID,Meyer RonjaORCID,Pohlkotte FabianORCID,Nies TimORCID

Abstract

The biotechnological exploitation of microorganisms enables the use of metabolism for the production of economically valuable substances, such as drugs or food. It is, thus, unsurprising that the investigation of microbial metabolism and its regulation has been an active research field for many decades. As a result, several theories and techniques were developed that allow the prediction of metabolic fluxes and yields as biotechnologically relevant output parameters. One important approach is to derive macrochemical equations that describe the overall metabolic conversion of an organism and basically treat microbial metabolism as a black box. The opposite approach is to include all known metabolic reactions of an organism to assemble a genomescale metabolic model. Interestingly, both approaches are rather successful to characterise and predict the expected product yield. Over the years, especially macrochemical equations have been extensively characterised in terms of their thermodynamic properties. However, a common challenge when characterising microbial metabolism by a single equation is to split this equation into two, describing the two modes of metabolism, anabolism and catabolism. Here, we present strategies to systematically identify separate equations for anabolism and catabolism. Based on metabolic models, we systematically identify all theoretically possible catabolic routes and determine their thermodynamic efficiency. We then show how anabolic routes can be derived, and use these to approximate biomass yield. Finally, we challenge the view of metabolism as a linear energy converter, in which the free energy gradient of catabolism drives the anabolic reactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3