Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol

Author:

Höschle Birgit1,Jendrossek Dieter1

Affiliation:

1. Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70550 Stuttgart, Germany

Abstract

Mini-Tn5-induced mutants with defects in utilization of linear terpenes such as citronellol, geraniol, citronellate and/or geranylate were isolated from Pseudomonas aeruginosa. One mutant was unable to utilize geraniol but showed wild-type growth with the three other acyclic terpenes tested. The Tn5 insertion site of the mutant was determined by DNA sequencing. Comparison with the P. aeruginosa genome sequence revealed that PA3028, an ORF with high similarity on the amino acid level to molybdenum cofactor biosynthesis protein A2 (encoded by moeA2), was the target of mini-Tn5 in the mutant. Disruption of moeA2 in P. aeruginosa PAO1 wild-type by insertion mutagenesis resulted in the same geraniol-minus phenotype. The ability to utilize geraniol was restored to the mutant by conjugative transfer of PCR-cloned wild-type moeA2 on a broad-host-range plasmid. Growth of P. aeruginosa PAO1 on geraniol and geranial, but not on citronellol, citronellate or geranylate, was inhibited by the presence of 10 mM tungstate, a molybdenum-specific inhibitor. Inhibition by tungstate was prevented by addition of molybdate. The results indicate that at least one step in the oxidation of geraniol to geranic acid (geranial oxidation) is a molybdenum-dependent reaction in P. aeruginosa and is different from the molybdenum-independent oxidation of citronellol to citronellate.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3