The gnyRDBHAL Cluster Is Involved in Acyclic Isoprenoid Degradation in Pseudomonas aeruginosa

Author:

Díaz-Pérez A. L.1,Zavala-Hernández A. N.1,Cervantes C.1,Campos-García J.1

Affiliation:

1. Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México

Abstract

ABSTRACT Pseudomonas aeruginosa PAO1 mutants affected in the ability to degrade acyclic isoprenoids were isolated with transposon mutagenesis. The gny cluster (for geranoyl), which encodes the enzymes involved in the lower pathway of acyclic isoprenoid degradation, was identified. The gny cluster is constituted by five probable structural genes, gnyDBHAL , and a possible regulatory gene, gnyR . Mutations in the gnyD , gnyB , gnyA , or gnyL gene caused inability to assimilate acyclic isoprenoids of the citronellol family of compounds. Transcriptional analysis showed that expression of the gnyB gene was induced by citronellol and repressed by glucose, whereas expression of the gnyR gene had the opposite behavior. Western blot analysis of citronellol-grown cultures showed induction of biotinylated proteins of 70 and 73 kDa, which probably correspond to 3-methylcrotonoyl-coenzyme A (CoA) carboxylase and geranoyl-CoA carboxylase (GCCase) alpha subunits, respectively. The 73-kDa biotinylated protein, identified as the α-GCCase subunit, is encoded by gnyA . Intermediary metabolites of the isoprenoid pathway, citronellic and geranic acids, were shown to accumulate in gnyB and gnyA mutants. Our data suggest that the protein products encoded in the gny cluster are the β and α subunits of geranoyl-CoA carboxylase (GnyB and GnyA), the citronelloyl-CoA dehydrogenase (GnyD), the γ-carboxygeranoyl-CoA hydratase (GnyH), and the 3-hydroxy-γ-carboxygeranoyl-CoA lyase (GnyL). We conclude that the gnyRDBHAL cluster is involved in isoprenoid catabolism.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3