Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell

Author:

Zhou Shungui1,Han Luchao21,Wang Yueqiang1,Yang Guiqin1,Zhuang Li1,Hu Pei2

Affiliation:

1. Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China

2. Chemistry and Materials Institute, Sichuan Normal University, Sichuan Chengdu 610068, PR China

Abstract

A Gram-negative, facultative anaerobic, motile, spiral, straight-to-slightly curved rod-shaped and nitrogen-fixing strain, designated SgZ-5T, was isolated from a microbial fuel cell (MFC) and was characterized by means of a polyphasic approach. Growth occurred with 0–1 % (w/v) NaCl (optimum 1 %) and at pH 5.5–8.5 (optimum pH 7.2) and at 25–37 °C (optimum 30 °C) in nutrient broth (NB). The strain had the ability to grow under anaerobic conditions via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS). Chemotaxonomic characteristics (main ubiquinone Q-10, major fatty acid C18 : 1ω7c/C18 : 1ω6c and DNA G+C content 67.7 mol%) were similar to those of members of the genus Azospirillum . According to the results of phylogenetic analyses, strain SgZ-5T belonged to the genus Azospirillum within the family Rhodospirillaceae of the class Alphaproteobacteria , and was related most closely to the type strains of Azospirillum lipoferum , Azospirillum thiophilum and Azospirillum oryzae (98.0, 97.6 and 97.1 % 16S rRNA gene sequence similarity, respectively). DNA–DNA pairing studies showed that the unidentified organism displayed reassociation values of 36.7±3.7, 24.1±2.2 and 22.3±2.4 % to the type strains of A. lipoferum , A. thiophilum and A. oryzae , respectively. Similarities between nifH gene sequences of strain SgZ-5T and members of the genus Azospirillum ranged from 94.0 to 97.0 %. A combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strain SgZ-5T represents a novel species, for which the name Azospirillum humicireducens sp. nov. is proposed. The type strain is SgZ-5T ( = CCTCC AB 2012021T = KACC 16605T).

Funder

National Key Technology R&D Program of China

National Natural Science Foundation of China

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3