The 3A protein of coxsackievirus B3 acts as a viral suppressor of RNA interference

Author:

Mu Jingfang12,Zhang Haobo32,Li Tao32,Shu Ting412,Qiu Yang312,Zhou Xi2431ORCID

Affiliation:

1. Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, CAS, Wuhan, Hubei, PR China

2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China

3. The University of Chinese Academy of Sciences, Beijing 100049, PR China

4. Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, PR China

Abstract

RNA interference (RNAi) is a potent antiviral defence mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs). Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus in the family Picornaviridae, and has been reported to be a major causative pathogen for viral myocarditis. Despite the importance of CVB3, it is unclear whether CVB3 can also encode proteins that suppress RNAi. Here, we showed that the CVB3 nonstructural protein 3A suppressed RNAi triggered by either small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. We further uncovered that CVB3 3A interacted directly with double-stranded RNAs (dsRNAs) and siRNAs in vitro. Through mutational analysis, we found that the VSR activity of CVB3 3A was significantly reduced by mutations of D24A/L25A/L26A, Y37A/C38A and R60A in conserved residues. In addition, the 3A protein encoded by coxsackievirus B5 (CVB5), another member of Enterovirus, also showed VSR activity. Taken together, our findings showed that CVB3 3A has in vitro VSR activity, thereby providing insights into the pathogenesis of CVB3 and other enteroviruses.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

Microbiology Society

Subject

Virology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3