RNA interference, an emerging component of antiviral immunity in mammals

Author:

Anobile Dario Pasquale1,Poirier Enzo Z.1ORCID

Affiliation:

1. Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France

Abstract

Antiviral RNA interference (RNAi) is an immune pathway that can, in certain conditions, protect mammalian cells against RNA viruses. It depends on the recognition and dicing of viral double-stranded RNA by a protein of the Dicer family, which leads to the production of viral small interfering RNAs (vsiRNAs) that sequence-specifically guide the degradation of cognate viral RNA. If the first line of defence against viruses relies on type-I and type-III interferons (IFN) in mammals, certain cell types such as stem cells, that are hyporesponsive for IFN, instead use antiviral RNAi via the expression of a specific antiviral Dicer. In certain conditions, antiviral RNAi can also contribute to the protection of differentiated cells. Indeed, abundant vsiRNAs are detected in infected cells and efficiently guide the degradation of viral RNA, especially in cells infected with viruses disabled for viral suppressors of RNAi (VSRs), which are virally encoded blockers of antiviral RNAi. The existence and importance of antiviral RNAi in differentiated cells has however been debated in the field, because data document mutual inhibition between IFN and antiviral RNAi. Recent developments include the engineering of a small molecule inhibitor of VSR to probe antiviral RNAi in vivo, as well as the detection of vsiRNAs inside extracellular vesicles in the serum of infected mice. It suggests that using more complex, in vivo models could allow to unravel the contribution of antiviral RNAi to immunity at the host level.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3