Systematic analysis of nuclear localization of Autographa californica multiple nucleopolyhedrovirus proteins

Author:

He Lihong12,Shao Wei2,Li Jiang2,Deng Fei2,Wang Hualin2,Hu Zhihong2ORCID,Wang Manli1ORCID

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, PR China

2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China

Abstract

Baculoviruses are large DNA viruses that replicate within the nucleus of infected host cells. Therefore, many viral proteins must gain access to the nucleus for efficient viral genome replication, gene transcription and virion assembly. To date, the global protein localization pattern of baculoviral proteins is unknown. In this study, we systematically analysed the nuclear localization of 154 ORFs encoded by the prototypic baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), either during transient expression or with super-infection of the virus. By transient expression of vectors containing egfp-fused ORFs, we found that in the absence of virus infection, 25 viral proteins were localized in the nucleus. Most of these, which we called ‘auto-nuclear localization’ proteins, are related to virus replication, transcription or virion structure, and 20 of them contain predicted classical nuclear localization signal. Upon virus infection, 11 proteins, which originally localized in the cytoplasm or both cytoplasm and nucleus in the transfection assays, were completely translocated into the nucleus, suggesting that their nuclear import is facilitated by other viral or host proteins. Further co-transfection experiments identified that four of the 11 proteins, including P143, P33, AC73 and AC114, were imported into the nucleus with the assistance of the auto-nuclear localization proteins LEF-3 (for P143), TLP (for P33) and VP80 (for both AC73 and AC114). This study presents the first global nuclear localization profile of AcMNPV proteins and provides useful information for further elucidation of the mechanisms of baculovirus nuclear entry and gene functions.

Funder

National Natural Science Foundation of China

Key Research Program of Frontier Sciences of the Chinese Academy of Sciences

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3