Affiliation:
1. University of Chinese Academy of Sciences, Beijing 100049, PR China
2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
Abstract
Baculoviruses are large DNA viruses that replicate within the nucleus of infected host cells. Therefore, many viral proteins must gain access to the nucleus for efficient viral genome replication, gene transcription and virion assembly. To date, the global protein localization pattern of baculoviral proteins is unknown. In this study, we systematically analysed the nuclear localization of 154 ORFs encoded by the prototypic baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), either during transient expression or with super-infection of the virus. By transient expression of vectors containing egfp-fused ORFs, we found that in the absence of virus infection, 25 viral proteins were localized in the nucleus. Most of these, which we called ‘auto-nuclear localization’ proteins, are related to virus replication, transcription or virion structure, and 20 of them contain predicted classical nuclear localization signal. Upon virus infection, 11 proteins, which originally localized in the cytoplasm or both cytoplasm and nucleus in the transfection assays, were completely translocated into the nucleus, suggesting that their nuclear import is facilitated by other viral or host proteins. Further co-transfection experiments identified that four of the 11 proteins, including P143, P33, AC73 and AC114, were imported into the nucleus with the assistance of the auto-nuclear localization proteins LEF-3 (for P143), TLP (for P33) and VP80 (for both AC73 and AC114). This study presents the first global nuclear localization profile of AcMNPV proteins and provides useful information for further elucidation of the mechanisms of baculovirus nuclear entry and gene functions.
Funder
National Natural Science Foundation of China
Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献