A SLiM-dependent conformational change in baculovirus IE1 controls its focus formation ability

Author:

Nagamine Toshihiro1,Sako Yasushi1

Affiliation:

1. RIKEN, Wako-shi, Saitama, Japan

Abstract

The baculovirus IE1 gene encodes a multifunctional protein that is essential for both DNA replication and RNA transcription of the virus. Prior to viral DNA replication, IE1 promotes early gene transcription when localized in hr-dependent foci. During viral DNA replication, the IE1 foci expand and fuse to generate the virogenic stroma (VS) with IE1 found in the VS reticulum. To explore the IE1 structural features essential for this coordinated localization, we constructed various IE1 mutants based on three putative domains (N, I, and C). We determined that a BDI motif located in the intrinsic disorder region (IDR) between the N and I domains acts as a nuclear localization signal, whereas BDII and HLH in the C domain are required for VS localization in infected cells or for chromosomal association in uninfected mitotic cells. Deletion of the SLiM (short linear motif) located in the I domain restrains both nuclear- and VS localization. Intra-molecular fluorescence resonance energy transfer (FRET) probes of IE1 mutants revealed a conformational change of the I-C two-domain fragment during infection, which was inhibited by aphidicolin, suggesting that IE1 undergoes a stage-dependent conformational change. Further, homo-dimerization of the I domain and stage-dependent conformational changes require an intact SLiM. Mutational analysis of SLiM revealed that VS localization and chromosomal association were retained following S291A and S291E substitutions, but hr-dependent focus formation differed between the two mutations. These results suggest that coordinated IE1 localization is controlled by SLiM-dependent conformational changes that are potentially switched by the phosphorylation state of the SLiM.

Funder

Japan Society for the Promotion of Science

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3