Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus

Author:

Tan Zhongyang1,Wada Yasuhiko23,Chen Jishuang4,Ohshima Kazusato1

Affiliation:

1. Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan

2. BioInfomatics Research Division, Japan Science and Technology Corporation, Tokyo 102-0081, Japan

3. Laboratory of Animal Production and Management, Faculty of Agriculture, Saga University, Saga 840-8502, Japan

4. Institute of Bioengineering, Zhejiang University of Science and Technology, Hangzhou Xiasha 310018, PR China

Abstract

A recombination map of the genome of Turnip mosaic virus (TuMV) was assembled using data from 19 complete genomic sequences, previously reported, and a composite sample of three regions of the genome, one-third in total, of a representative Asia-wide collection of 70 isolates. Thus, a total of 89 isolates of worldwide origin was analysed for recombinants. Eighteen recombination sites were found spaced throughout the 5′ two-thirds of the genome, but there were only two in the 3′ one-third; thus, 24 and 35 % of the P1 and NIa-VPg gene sequences examined were recombinants, whereas only 1 % of the corresponding NIa-Pro and CP gene sequences were recombinants. Recombinants with parents from the same or from different lineages were found, and some recombination sites characterized particular lineages. Most of the strain BR recombinants belonged to the Asian-BR group, as defined previously, and it was concluded that this lineage resulted from a recent migration, whereas many of the strain B recombinants from Asia fell into the world-B group. Again, a large proportion of isolates in this group were recombinants. Some recombination sites were found only in particular lineages, and hence seemed more likely to be the surviving progeny from single recombinational events, rather than the progeny of multiple events occurring at recombination hotspots. It seems that the presence of recombination sites, as well as sequence similarities, may be used to trace the migration and evolution of TuMV.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3