Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses

Author:

Simón Oihane1,Williams Trevor1,López-Ferber Miguel2,Caballero Primitivo1

Affiliation:

1. Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain

2. Laboratoire de Patologie Comparée, UMR 5087, INRA-CNRS-Université de Montpellier II, 30380 Saint Christol-Lez-Ales, France

Abstract

The multicapsid nucleopolyhedroviruses (NPVs) of Spodoptera exigua (SeMNPV), Spodoptera frugiperda (SfMNPV), and Spodoptera littoralis (SpliNPV) are genetically similar (78 % similarity) but differ in their degree of host specificity. Infection by each of the three NPVs in these three Spodoptera host species was determined by oral inoculation of larvae with occlusion bodies (OBs) or intrahaemocoelic injection with occlusion derived virions (ODVs). RT-PCR analysis of total RNA from inoculated insects, targeted at immediate early (ie-0), early (egt, DNA polymerase), late (chitinase) and very late genes (polyhedrin), indicated that each of the NPVs initiated an infection in all three host species tested. SpliMNPV produced a fatal NPV disease in both heterologous hosts, S. frugiperda and S. exigua, by oral inoculation or injection. SfMNPV was lethal to heterologous hosts, S. exigua and S. littoralis, but infected larvae did not melt and disintegrate, and progeny OBs were not observed. SeMNPV was able to replicate in heterologous hosts and all genes required for replication were present in the genome, as the virus primary infection cycle was observed. However, gene expression was significantly lower in heterologous hosts. SeMNPV pathogenesis in S. frugiperda and S. littoralis was blocked at the haemocoel transmission stage and very nearly cleared. SeMNPV mixtures with SpliMNPV or SfMNPV did not extend the host range of SeMNPV; in all cases, only the homologous virus was observed to proliferate. It is concluded that entry and the primary virus infection cycle are not the only, or the major determinants, for SeMNPV infection of heterologous Spodoptera species.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3