A novel protein expression strategy using recombinant bovine respiratory syncytial virus (BRSV): modifications of the peptide sequence between the two furin cleavage sites of the BRSV fusion protein yield secreted proteins, but affect processing and function of the BRSV fusion protein

Author:

König Patricia1,Giesow Katrin1,Schuldt Kathrin1,Buchholz Ursula J.1,Keil Günther M.1

Affiliation:

1. Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, 17493 Greifswald-Insel Riems, Germany

Abstract

The bovine respiratory syncytial virus (BRSV) fusion (F) protein is cleaved at two furin cleavage sites, which results in generation of the disulfide-linked F1 and F2 subunits and release of an intervening peptide of 27 aa (pep27). A series of mutated open reading frames encoding F proteins that lacked the entire pep27, that contained an arbitrarily chosen 23 aa sequence instead of pep27 or in which pep27 was replaced by the amino acid sequences for the bovine cytokines interleukin 2 (boIL2), interleukin 4 (boIL4) or gamma interferon (boIFN-γ) was constructed. Transient expression experiments revealed that the sequence of the intervening peptide influenced intracellular transport, maturation of the F protein and F-mediated syncytium formation. Expression of boIL2, boIL4 or boIFN-γ in place of pep27 resulted in secretion of the cytokines into the culture medium. All mutated F proteins except the boIFN-γ-containing variant could be expressed by and were functional for recombinant BRSV. Characterization of the cell culture properties of the recombinants demonstrated that the amino acid sequence between the two furin cleavage sites affected entry into target cells, direct spreading of virions from cell to cell and virus growth. Secretion of boIL2 and boIL4 into the medium of cells infected with the respective recombinants demonstrated that the F protein can be used to express secreted heterologous bioactive peptides or (glyco)proteins, which might be of interest for the development of novel RSV vaccines.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3