Characterization of the murine cytomegalovirus early transcription unit e1 that is induced by immediate-early proteins

Author:

Bühler B1,Keil G M1,Weiland F1,Koszinowski U H1

Affiliation:

1. Department of Virology, University of Ulm, Federal Republic of Germany.

Abstract

The regulation of murine cytomegalovirus early (E) gene expression was studied in the cell line B25, which is stably transfected with the immediate-early ie1/ie3 gene complex. Infection of B25 cells in the presence of the protein synthesis inhibitor cycloheximide resulted in the expression of some E genes, whereas for the expression of other E genes prior protein synthesis was still mandatory, thus showing differences in the expression requirements of individual E genes. Transcription unit e1, a member of the E genes induced by immediate-early products of the ie1/ie3 gene complex, was characterized. It is located between map units 0.709 and 0.721 of the genome of murine cytomegalovirus strain Smith. A 2.6-kilobase RNA specified in this region is spliced from three exons of 912, 177, and 1,007 or 1,020 nucleotides, which are separated by introns of 93 and 326 nucleotides. The second AUG located in the first exon 119 nucleotides downstream of the 5' cap site is followed by an open reading frame of 990 nucleotides. The predicted polypeptide of 330 amino acids has a calculated molecular mass of 36.4 kilodaltons. Transfection with e1 revealed three antigenically related proteins of 36, 37, and 38 kilodaltons; these proteins probably represent differently modified forms of the predicted protein. These three proteins are phosphorylated and are associated with intranuclear inclusion bodies. A 33-kilodalton protein also derived from e1 was identified as a product of nonspliced transcripts. Comparison of amino acid sequences revealed homology between the murine cytomegalovirus transcription unit e1 and a human cytomegalovirus E transcription unit.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3