Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells

Author:

Calvo E.1,Escors D.2,López J. A.1,González J. M.2,álvarez A.3,Arza E.3,Enjuanes L.2

Affiliation:

1. Unidad de Proteómica, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Sinesio Delgado 4, 28029 Madrid, Spain

2. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB, CSIC), Campus Univ. Autonoma, 3 Darwin St, Cantoblanco, 28049 Madrid, Spain

3. Unidad de Citometría, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Sinesio Delgado 4, 28029 Madrid, Spain

Abstract

The nucleocapsid (N) protein is the only phosphorylated structural protein of the coronavirus Transmissible gastroenteritis virus (TGEV). The phosphorylation state and intracellular distribution of TGEV N protein in infected cells were characterized by a combination of techniques including: (i) subcellular fractionation and analysis of tryptic peptides by two-dimensional nano-liquid chromatography, coupled to ion-trap mass spectrometry; (ii) tandem mass-spectrometry analysis of N protein resolved by SDS-PAGE; (iii) Western blotting using two specific antisera for phosphoserine-containing motifs; and (iv) confocal microscopy. A total of four N protein-derived phosphopeptides were detected in mitochondria–Golgi–endoplasmic reticulum–Golgi intermediate compartment (ERGIC)-enriched fractions, including N-protein phosphoserines 9, 156, 254 and 256. Confocal microscopy showed that the N protein found in mitochondria–Golgi–ERGIC fractions localized within the Golgi–ERGIC compartments and not with mitochondria. Phosphorylated N protein was also present in purified virions, containing at least phosphoserines 156 and 256. Coronavirus N proteins showed a conserved pattern of secondary structural elements, including six β-strands and four α-helices. Whilst serine 9 was present in a non-conserved domain, serines 156, 254 and 256 were localized close to highly conserved secondary structural elements within the central domain of coronavirus N proteins. Serine 156 was highly conserved, whereas no clear homologous sites were found for serines 254 and 256 for other coronavirus N proteins.

Publisher

Microbiology Society

Subject

Virology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3