Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae)

Author:

Johnson Tammi L.1,Hinnebusch B. Joseph2,Boegler Karen A.1,Graham Christine B.1,MacMillan Katherine1,Montenieri John A.1,Bearden Scott W.1,Gage Kenneth L.1,Eisen Rebecca J.1

Affiliation:

1. Bacterial Diseases Branch, Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA

2. Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA

Abstract

Plague, caused by Yersinia pestis, is characterized by quiescent periods punctuated by rapidly spreading epizootics. The classical ‘blocked flea’ paradigm, by which a blockage forms in the flea’s proventriculus on average 1–2 weeks post-infection (p.i.), forces starving fleas to take multiple blood meals, thus increasing opportunities for transmission. Recently, the importance of early-phase transmission (EPT), which occurs prior to blockage formation, has been emphasized during epizootics. Whilst the physiological and molecular mechanisms of blocked flea transmission are well characterized, the pathogen–vector interactions have not been elucidated for EPT. Within the blocked flea model, Yersinia murine toxin (Ymt) has been shown to be important for facilitating colonization of the midgut within the flea. One proposed mechanism of EPT is the regurgitation of infectious material from the flea midgut during feeding. Such a mechanism would require bacteria to colonize and survive for at least brief periods in the midgut, a process that is mediated by Ymt. Two key bridging vectors of Y. pestis to humans, Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae), were used in our study to test this hypothesis. Fleas were infected with a mutant strain of Y. pestis containing a non-functional ymt that was shown previously to be incapable of colonizing the midgut and were then allowed to feed on SKH-1 mice 3 days p.i. Our results show that Ymt was not required for EPT by either flea species.

Publisher

Microbiology Society

Subject

Microbiology

Reference38 articles.

1. Studies on plague. I. Purification and properties of the toxin of Pasteurella pestis;Ajl;J Bacteriol,1955

2. LXVII. Observations on the mechanism of the transmission of plague by fleas;Bacot;J Hyg (Lond),1914

3. Surveillance and control of bubonic plague in the United States;Barnes;Symp Zool Soc Lond,1982

4. Sylvatic plague studies. The vector efficiency of nine species of fleas compared to Xenopsylla cheopsis;Burroughs;J. Hyg (Lond),1947

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3