The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups

Author:

Schaefer Laura1,Auchtung Thomas A.1,Hermans Karley E.1,Whitehead Daniel2,Borhan Babak2,Britton Robert A.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA

2. Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

Abstract

Reuterin is an antimicrobial compound produced by Lactobacillus reuteri, and has been proposed to mediate, in part, the probiotic health benefits ascribed to this micro-organism. Despite 20 years of investigation, the mechanism of action by which reuterin exerts its antimicrobial effects has remained elusive. Here we provide evidence that reuterin induces oxidative stress in cells, most likely by modifying thiol groups in proteins and small molecules. Escherichia coli cells subjected to sublethal levels of reuterin expressed a set of genes that overlapped with the set of genes composing the OxyR regulon, which senses and responds to various forms of oxidative stress. E. coli cells mutated for oxyR were more sensitive to reuterin compared with wild-type cells, further supporting a role for reuterin in exerting oxidative stress. The addition of cysteine to E. coli or Clostridium difficile growth media prior to exposure to reuterin suppressed the antimicrobial effect of reuterin on these bacteria. Interestingly, interaction with E. coli stimulated reuterin production or secretion by L. reuteri, indicating that contact with other microbes in the gut increases reuterin output. Thus, reuterin inhibits bacterial growth by modifying thiol groups, which indicates that reuterin negatively affects a large number of cellular targets.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3