Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection

Author:

Rodríguez-Rojas Alexandro1,Mena Ana2,Martín Soledad1,Borrell Nuria2,Oliver Antonio2,Blázquez Jesús1

Affiliation:

1. Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin 3, Campus UAM, 28049 Madrid, Spain

2. Servicio de Microbiologia, Hospital Son Dureta, C/ Andrea Doria 55, 07014 Palma de Mallorca, Spain

Abstract

Clinical isolates of Pseudomonas aeruginosa that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in P. aeruginosa. Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to be located in the hmgA gene, which putatively encodes the enzyme homogentisate-1,2-dioxygenase. Complementation studies indicate that hmgA disruption is responsible for the hyperproduction of pyomelanin in both laboratory and clinical isolates. A relationship between hmgA disruption and adaptation to chronic infection was explored and our results show that the inactivation of hmgA produces a slight reduction of killing ability in an acute murine model of lung infection. On the other hand, it also confers decreased clearance and increased persistence in chronic lung infections. Whether pyomelanin production is the cause of the increased adaptation to chronicity or just a side effect of hmgA inactivation is a question to be studied in future; however, this adaptation is consistent with the higher resistance to oxidative stress conferred in vitro by the pyomelanin pigment. Our results clearly demonstrate that hmgA inactivation leads to a better adaptation to chronic infection, and strongly suggest that this mechanism may be exploited in naturally occurring P. aeruginosa strains.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3