Glycoprotein B plays a predominant role in mediating herpes simplex virus type 2 attachment and is required for entry and cell-to-cell spread

Author:

Cheshenko Natalia1,Herold Betsy C.1

Affiliation:

1. Department of Pediatrics and Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1657, New York, NY 10029, USA1

Abstract

Heparan sulfate moieties serve as receptors for initial binding of herpes simplex virus types 1 and 2 (HSV-1 and -2) to cells. Deletion of HSV-1 glycoprotein C (gC-1) but not HSV-2 gC (gC-2) results in virions with reduced specific binding activity (virus particles bound per cell) and specific infectivity (p.f.u. per particle), suggesting that for HSV-1, but not HSV-2, gC plays a major role in mediating virus attachment. To test the hypothesis that glycoprotein B (gB), the other heparin-binding glycoprotein, mediates HSV-2 attachment, HSV-2 viruses deleted in gB-2 alone or deleted in both gB-2 and gC-2 were constructed. These viruses were grown on complementing or non-complementing cells and were compared with parental HSV-2(G) or a gC-2-deleted HSV-2 mutant (with respect to ability to bind and infect cells). At equivalent input concentrations of purified virions, significantly fewer gB-2-deleted virions bound to cells compared to parental HSV-2(G) or virus grown on complementing cells. In addition, viruses deleted in gB-2 were non-infectious. No immediate early proteins were detected in cells infected with gB-2-deleted virus harvested from non-complementing Vero cells, whereas these proteins were readily detected 4 h post-infection in cells infected with virus grown on complementing cells or with parental viruses. Viruses deleted in gB-2 failed to spread cell to cell, as evidenced by the inability to form plaques. Together these studies demonstrate that gB-2 plays a key role in mediating HSV-2 attachment and is required for entry and cell-to-cell spread. This glycoprotein is an important target for development of novel antiviral drugs.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3