Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins

Author:

Tan Poi Kiang1,Michou Anne-Isabelle1,Bergelson Jeffrey M.2,Cotten Matt1

Affiliation:

1. Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria1

2. Division of Immunologic and Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, USA2

Abstract

The coxsackievirus and adenovirus receptor (CAR) is a high affinity receptor used by adenoviruses, including adenovirus type 5 (Ad5). The adenovirus fibre molecule bears the high affinity cell binding domain of Ad5, allowing virions to attach to CAR. The avian adenovirus CELO displays two fibre molecules on its capsid and it was logical to expect that the cell binding functions of CELO might also reside in one or both of these fibres. We had previously shown that the cell binding properties of CELO resemble Ad5, suggesting that the two viruses use similar receptors. Experiments with CAR-deficient CHO cells and CHO cells modified to express CAR demonstrated that CELO has CAR-dependent transduction behaviour like Ad5. Mutations were introduced into the CELO genome to disrupt either the long fibre 1 or the short fibre 2. A CELO genome with fibre 2 disrupted did not generate virus, demonstrating that fibre 2 is essential for some stage in virus growth, assembly or spread. However, a CELO genome with disrupted fibre 1 gene produced virus (CELOdF1) that was capable of entering chicken cells, but had lost both the ability to efficiently transduce human cells and the CAR-specific transduction displayed by wild-type CELO. The ability of CELOdF1 to transduce chicken cells suggests that CELOdF1 may still bind, probably via fibre 2, to a receptor expressed on avian but not mammalian cells. CELOdF1 replication was dramatically impaired in chicken embryos, demonstrating that fibre 1 is important for the in vivo biology of CELO.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3