The effect of mosquito passage on the La Crosse virus genotype

Author:

Borucki Monica K.1,Kempf Brian J.1,Blair Carol D.1,Beaty Barry J.1

Affiliation:

1. Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Colorado State University, Fort Collins, CO 80523-1682, USA1

Abstract

The genetic consequences of passing three different strains of La Crosse (LAC) virus orally and transovarially in Aedes triseriatus mosquitoes were examined. Two of the LAC strains (WT LAC and LAC ORI) had been passaged numerous times in cell culture; the third strain (SM1-78) had been passaged only once in suckling mice. Genetic changes were monitored in three regions of the LAC genome after oral infection and dissemination in the mosquito, and transovarial transmission (TOT) of the virus to progeny. Sequence analyses were used to characterize the genetic changes occurring in regions of G1, G2 and N open reading frames (ORFs) during passage. Only one mutation was detected in the G1 ORF of SM1-78 virus after mosquito passage; however, numerous nucleotide and amino acid substitutions were detected in the G1 ORF of WT LAC and LAC ORI (cell culture-adapted viruses). In contrast to G1, the N and G2 ORF sequences examined were stable. Mutations introduced into viral genomes during replication in parental mosquitoes were expressed in progeny mosquitoes following TOT. Genetic diversity of virus populations from a single mosquito was examined by single-strand conformation polymorphisms analysis of the variable region of glycoprotein G1. LAC virus RNA genotype diversity was greatest in virus that infected and replicated in the midgut, and declined as virus disseminated from the midgut and infected ovaries and salivary glands.

Publisher

Microbiology Society

Subject

Virology

Reference26 articles.

1. Attenuation of wild-type yellow fever virus by passage in HeLa cells;Barrett;Journal of General Virology,1990

2. Bunyaviridae – natural history;Beaty;Current Topics in Microbiology & Immunology,1991

3. Molecular basis of bunyavirus transmission by mosquitoes: role of the middle-sized RNA segment;Beaty;Science,1981

4. Molecular basis of bunyavirus per os infection of mosquitoes: role of the middle-sized RNA segment;Beaty;Proceedings of the National Academy of Sciences, USA,1982

5. Arbovirus–vector interactions: determinants of arbovirus evolution;Beaty,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3