The La Crosse virus class II fusion glycoproteinijloop contributes to infectivity and cholesterol-dependent entry

Author:

Thannickal Sara A.,Spector Sophie N.,Stapleford Kenneth A.ORCID

Abstract

AbstractArthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat with little to no antiviral treatments. La Crosse virus (LACV) from theBunyaviralesorder is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from theTogaviridaefamily, we hypothesized that LACV would share similar entry mechanisms to CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol-dependent while replication was less affected by cholesterol manipulation. In addition, we generated single point mutants in the LACVijloop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gcijloop impaired virus infectivity and attenuate LACVin vitroandin vivo. Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolution in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, supporting the Gc glycoprotein as a target for LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to infectivity and pathogenesis.ImportanceVector-borne arboviruses are significant health threats leading to devastating disease worldwide. This emergence and the fact that there are little to no vaccines or antivirals targeting these viruses highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contain strong structural similarities in the tip of domain II. Here we show that the bunyavirus La Crosse virus uses similar mechanisms to entry as the alphavirus chikungunya virus and residues in theijloop are important for virus infectivity. These studies show that genetically diverse viruses use similar mechanisms through concerned structure domains, suggesting these may be a target for broad-spectrum antivirals to multiple arbovirus families.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3