Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes

Author:

Lund David12ORCID,Kieffer Nicolas31ORCID,Parras-Moltó Marcos12ORCID,Ebmeyer Stefan31,Berglund Fanny31ORCID,Johnning Anna124ORCID,Larsson D. G. Joakim31ORCID,Kristiansson Erik21

Affiliation:

1. Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden

2. Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden

3. Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

4. Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden

Abstract

Macrolides are broad-spectrum antibiotics used to treat a range of infections. Resistance to macrolides is often conferred by mobile resistance genes encoding Erm methyltransferases or Mph phosphotransferases. New erm and mph genes keep being discovered in clinical settings but their origins remain unknown, as is the type of macrolide resistance genes that will appear in the future. In this study, we used optimized hidden Markov models to characterize the macrolide resistome. Over 16 terabases of genomic and metagenomic data, representing a large taxonomic diversity (11 030 species) and diverse environments (1944 metagenomic samples), were searched for the presence of erm and mph genes. From this data, we predicted 28 340 macrolide resistance genes encoding 2892 unique protein sequences, which were clustered into 663 gene families (<70 % amino acid identity), of which 619 (94 %) were previously uncharacterized. This included six new resistance gene families, which were located on mobile genetic elements in pathogens. The function of ten predicted new resistance genes were experimentally validated in Escherichia coli using a growth assay. Among the ten tested genes, seven conferred increased resistance to erythromycin, with five genes additionally conferring increased resistance to azithromycin, showing that our models can be used to predict new functional resistance genes. Our analysis also showed that macrolide resistance genes have diverse origins and have transferred horizontally over large phylogenetic distances into human pathogens. This study expands the known macrolide resistome more than ten-fold, provides insights into its evolution, and demonstrates how computational screening can identify new resistance genes before they become a significant clinical problem.

Funder

Vetenskapsrådet

Publisher

Microbiology Society

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3