Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts

Author:

Orgeur Mickael1,Frigui Wafa1ORCID,Pawlik Alexandre1ORCID,Clark Simon2,Williams Ann2,Ates Louis S.31ORCID,Ma Laurence4ORCID,Bouchier Christiane4ORCID,Parkhill Julian56ORCID,Brodin Priscille7ORCID,Brosch Roland1ORCID

Affiliation:

1. Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France

2. Public Health England, Porton Down, Salisbury SP4 0JG, UK

3. Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, Netherlands

4. Institut Pasteur, Biomics, C2RT, Paris 75015, France

5. Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK

6. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK

7. CIIL - Center for Infection and Immunity of Lille, Université de Lille/CNRS UMR 9017/INSERM U1019/CHU Lille/Institut Pasteur de Lille, Lille 59000, France

Abstract

Mycobacterium microti is an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical M. microti isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available M. microti genome sequences. These data also confirm that the vole and clinical M. microti isolates were all lacking the specific RD1mic region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the M. tuberculosis H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette–Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain’s vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1mic region.

Funder

Horizon 2020 Framework Programme

Agence Nationale de la Recherche

Fondation pour la Recherche Médicale

Institut Pasteur

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3