Ancestral state reconstruction of metabolic pathways across pangenome ensembles

Author:

Psomopoulos Fotis E.1ORCID,van Helden Jacques2ORCID,Médigue Claudine3,Chasapi Anastasia4ORCID,Ouzounis Christos A.4ORCID

Affiliation:

1. Institute of Applied Biosciences (INAB), Center for Research & Technology Hellas (CERTH), GR-57001 Thessalonica, Greece

2. Lab. Technological Advances for Genomics & Clinics (TAGC), Université d'Aix-Marseille (AMU), INSERM Unit U1090, 163, Avenue de Luminy, 13288 Marseille cedex 09, France

3. UMR 8030, CNRS, Université Evry-Val-d'Essonne, CEA, Institut de Biologie François Jacob – Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Evry, France

4. Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Center for Research & Technology Hellas (CERTH), GR-57001 Thessalonica, Greece

Abstract

As genome sequencing efforts are unveiling the genetic diversity of the biosphere with an unprecedented speed, there is a need to accurately describe the structural and functional properties of groups of extant species whose genomes have been sequenced, as well as their inferred ancestors, at any given taxonomic level of their phylogeny. Elaborate approaches for the reconstruction of ancestral states at the sequence level have been developed, subsequently augmented by methods based on gene content. While these approaches of sequence or gene-content reconstruction have been successfully deployed, there has been less progress on the explicit inference of functional properties of ancestral genomes, in terms of metabolic pathways and other cellular processes. Herein, we describe PathTrace, an efficient algorithm for parsimony-based reconstructions of the evolutionary history of individual metabolic pathways, pivotal representations of key functional modules of cellular function. The algorithm is implemented as a five-step process through which pathways are represented as fuzzy vectors, where each enzyme is associated with a taxonomic conservation value derived from the phylogenetic profile of its protein sequence. The method is evaluated with a selected benchmark set of pathways against collections of genome sequences from key data resources. By deploying a pangenome-driven approach for pathway sets, we demonstrate that the inferred patterns are largely insensitive to noise, as opposed to gene-content reconstruction methods. In addition, the resulting reconstructions are closely correlated with the evolutionary distance of the taxa under study, suggesting that a diligent selection of target pangenomes is essential for maintaining cohesiveness of the method and consistency of the inference, serving as an internal control for an arbitrary selection of queries. The PathTrace method is a first step towards the large-scale analysis of metabolic pathway evolution and our deeper understanding of functional relationships reflected in emerging pangenome collections.

Funder

FP7 Food, Agriculture and Fisheries, Biotechnology

Publisher

Microbiology Society

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3