Comparison of the genetic basis of biofilm formation between Salmonella Typhimurium and Escherichia coli

Author:

Holden Emma R.1ORCID,Yasir Muhammad1ORCID,Turner A. Keith1ORCID,Charles Ian G.21,Webber Mark A.21ORCID

Affiliation:

1. Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK

2. Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK

Abstract

Most bacteria can form biofilms, which typically have a life cycle from cells initially attaching to a surface before aggregation and growth produces biomass and an extracellular matrix before finally cells disperse. To maximize fitness at each stage of this life cycle and given the different events taking place within a biofilm, temporal regulation of gene expression is essential. We recently described the genes required for optimal fitness over time during biofilm formation in Escherichia coli using a massively parallel transposon mutagenesis approach called TraDIS-Xpress. We have now repeated this study in Salmonella enterica serovar Typhimurium to determine the similarities and differences in biofilm formation through time between these species. A core set of pathways involved in biofilm formation in both species included matrix production, nucleotide biosynthesis, flagella assembly and LPS biosynthesis. We also identified several differences between the species, including a divergent impact of the antitoxin TomB on biofilm formation in each species. We observed deletion of tomB to be detrimental throughout the development of the E. coli biofilms but increased biofilm biomass in S. Typhimurium. We also found a more pronounced role for genes involved in respiration, specifically the electron transport chain, on the fitness of mature biofilms in S. Typhimurium than in E. coli and this was linked to matrix production. This work deepens understanding of the core requirements for biofilm formation in the Enterobacteriaceae whilst also identifying some genes with specialised roles in biofilm formation in each species.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3