Investigating howSalmonellacolonise alfalfa using a whole genome screen

Author:

Holden Emma R.,Al-Khanaq Haider,Vimont Noémie,Webber Mark A.,Trampari Eleftheria

Abstract

AbstractEnteropathogenic bacteria includingSalmonellaregularly cause outbreaks of infection from fresh produce posing a significant public health threat.Salmonella’s ability to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which poses a challenge to food decontamination and facilitates persistence in the food chain. Preventing biofilm formation on food products and in food processing environments is crucial for reducing the incidence of foodborne diseases. Understanding the mechanisms of colonisation and establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-directed Insertion site sequencing (TraDIS-Xpress) to investigate the mechanisms employed bySalmonellaenterica serovar Typhimurium to colonise and establish itself on fresh produce at critical timepoints following infection. We established an alfalfa infection model and compared the findings to those obtained from glass surfaces. Our research revealed dynamic changes in the pathways associated with biofilm formation over time, with distinct plant-specific and glass-specific mechanisms for biofilm formation, alongside the identification of shared genes playing pivotal roles in both contexts. Notably, we observed variations in the significance of factors such as flagella biosynthesis, lipopolysaccharide (LPS) production, and stringent response regulation in biofilm development on plant versus glass surfaces. Understanding the genetic underpinnings of biofilm formation on both biotic and abiotic surfaces offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain.FundingThe authors gratefully acknowledge the support of the Biotechnology and Biological Sciences Research Council (BBSRC); ERH, JAA, HAK, MAW and ET were supported by the BBSRC Institute Strategic Programme Microbes and Food Safety BB/X011011/1 and its constituent project BBS/E/F/000PR13635. NV was supported by the Food Safety Research Network grant BB/X002985/1 awarded to ET.Data availabilityNucleotide sequence data supporting the analysis in this study has been deposited in ArrayExpress under the accession number E-MTAB-13495. The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3