Comparative genomics reveals an SNP potentially leading to phenotypic diversity of Salmonella enterica serovar Enteritidis

Author:

Ko Duhyun1,Choi Sang Ho1ORCID

Affiliation:

1. National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea

Abstract

An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.

Funder

Ministry of Food and Drug Safety

Ministry of Science, ICT and Future Planning

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3