Genomic diversity of genus Limosilactobacillus

Author:

Ksiezarek Magdalena12ORCID,Grosso Filipa12,Ribeiro Teresa Gonçalves12ORCID,Peixe Luísa21ORCID

Affiliation:

1. Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

2. Laboratory of Microbiology, UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

Abstract

The genus Limosilactobacillus (formerly Lactobacillus ) contains multiple species considered to be adapted to vertebrates, yet their genomic diversity has not been explored. In this study, we performed comparative genomic analysis of Limosilactobacillus (22 species; 332 genomes) isolated from different niches, further focusing on human strains (11 species; 74 genomes) and their adaptation features to specific body sites. Phylogenomic analysis of Limosilactobacillus showed misidentification of some strains deposited in public databases and existence of putative novel Limosilactobacillus species. The pangenome analysis revealed a remarkable genomic diversity (only 1.3 % of gene clusters are shared), and we did not observe a strong association of the accessory genome with different niches. The pangenome of Limosilactobacillus reuteri and Limosilactobacillus fermentum was open, suggesting that acquisition of genes is still occurring. Although most Limosilactobacillus were predicted as antibiotic susceptible (83%), acquired antibiotic-resistance genes were common in L. reuteri from food-producing animals. Genes related to lactic acid isoform production (>95 %) and putative bacteriocins (70.2%) were identified in most Limosilactobacillus strains, while prophages (55.4%) and CRISPR-Cas systems (32.0%) were less prevalent. Among strains from human sources, several metabolic pathways were predicted as conserved and completed. Their accessory genome was highly variable and did not cluster according to different human body sites, with some exceptions (urogenital Limosilactobacillus vaginalis , Limosilactobacillus portuensis , Limosilactobacillus urinaemulieris and Limosilactobacillus coleohominis or gastrointestinal Limosilactobacillus mucosae ). Moreover, we identified 12 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues that were significantly enriched in strains from particular body sites. We concluded that evolution of the highly diverse Limosilactobacillus is complex and not always related to niche or human body site origin.

Funder

Fundação para a Ciência e a Tecnologia

Unidade de Ciências Biomoleculares Aplicada

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3