Comprehensive and accurate genetic variant identification from contaminated and low-coverage Mycobacterium tuberculosis whole genome sequencing data

Author:

Heupink Tim H.1ORCID,Verboven Lennert1ORCID,Warren Robin M.2ORCID,Van Rie Annelies1ORCID

Affiliation:

1. Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium

2. South African Medical Research Council Centre for Tuberculosis Research and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa

Abstract

Improved understanding of the genomic variants that allow Mycobacterium tuberculosis (Mtb) to acquire drug resistance, or tolerance, and increase its virulence are important factors in controlling the current tuberculosis epidemic. Current approaches to Mtb sequencing, however, cannot reveal Mtb’s full genomic diversity due to the strict requirements of low contamination levels, high Mtb sequence coverage and elimination of complex regions. We have developed the XBS (compleX Bacterial Samples) bioinformatics pipeline, which implements joint calling and machine-learning-based variant filtering tools to specifically improve variant detection in the important Mtb samples that do not meet these criteria, such as those from unbiased sputum samples. Using novel simulated datasets, which permit exact accuracy verification, XBS was compared to the UVP and MTBseq pipelines. Accuracy statistics showed that all three pipelines performed equally well for sequence data that resemble those obtained from culture isolates of high depth of coverage and low-level contamination. In the complex genomic regions, however, XBS accurately identified 9.0 % more SNPs and 8.1 % more single nucleotide insertions and deletions than the WHO-endorsed unified analysis variant pipeline. XBS also had superior accuracy for sequence data that resemble those obtained directly from sputum samples, where depth of coverage is typically very low and contamination levels are high. XBS was the only pipeline not affected by low depth of coverage (5–10×), type of contamination and excessive contamination levels (>50 %). Simulation results were confirmed using whole genome sequencing (WGS) data from clinical samples, confirming the superior performance of XBS with a higher sensitivity (98.8%) when analysing culture isolates and identification of 13.9 % more variable sites in WGS data from sputum samples as compared to MTBseq, without evidence for false positive variants when rRNA regions were excluded. The XBS pipeline facilitates sequencing of less-than-perfect Mtb samples. These advances will benefit future clinical applications of Mtb sequencing, especially WGS directly from clinical specimens, thereby avoiding in vitro biases and making many more samples available for drug resistance and other genomic analyses. The additional genetic resolution and increased sample success rate will improve genome-wide association studies and sequence-based transmission studies.

Funder

fonds wetenschappelijk onderzoek

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3