Desulfuromonas sp. 'CSMB_57’, isolation and genomic insights from the most abundant bacterial taxon in eastern Australian coals

Author:

McLeish Andrew G.12ORCID,Greenfield Paul31ORCID,Midgley David J.1,Paulsen Ian T.2ORCID

Affiliation:

1. Department of Energy, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, Sydney, Australia

2. Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia

3. Department of Biological Sciences, Macquarie University, North Ryde, Sydney, Australia

Abstract

One of the most abundant and ubiquitous taxa observed in eastern Australian coal seams is an uncultured Desulfuromonas species and part of the Coal Seam Microbiome dataset assigned as ‘CSMB_57’. Despite this abundance and ubiquity, knowledge about this taxon is limited. The present study aimed to generate an enrichment culture of Desulfuromonas sp. ‘CSMB_57’ using culturing strategies that exploit its sulphur-reducing capabilities by utilizing a polysulfide solution in a liquid medium. Using dilution to extinction methods, a highly enriched culture was successfully generated. The full-length 16S rRNA sequence revealed that all closely related taxa were observed in subsurface environments suggesting that D. sp. ‘CSMB_57’ may be a subsurface specialist. Subsequently, the DNA from the enrichment culture was sequenced and the genome of D. sp. ‘CSMB_57’ was assembled. Genomic annotation revealed a high number of CRISPR arrays for viral defence, a large array of ABC transporters for amino acid and peptide uptake, as well as genes likely associated with syntrophy such as genes associated with type-IVa pilus, often used for direct interspecies electron transfer, and multiple hydrogenases capable of producing hydrogen. From the various genomic observations, a conceptual ecological model was developed that explores its possible syntrophic roles with hydrogenotrophic methanogens and acetogenic bacteria within coal-seam environments.

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3