Affiliation:
1. School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
Abstract
The Shigella flexneri polysaccharide co-polymerase class 1a (PCP1a) protein, WzzBSF, regulates LPS O-antigen (Oag) chain length to confer short (S)-type Oag chains of ~10–17 Oag repeat units (RUs). The S-type Oag chains affect Shigella flexneri virulence as they influence IcsA-mediated actin-based motility. However, they do not confer resistance to complement; this is conferred by the very-long (VL)-type Oag chains determined by WzzBpHS2. Colicins are bacterial proteins produced by some Escherichia coli strains to kill related strains. While the presence of Oag chains has been shown to shield outer-membrane proteins from colicins, the impact of Oag chain length against colicins is unknown. In this study, initial testing indicated that a Shigella flexneri Y wzz : : kanr
mutant was more sensitive to colicin E2 compared with the WT strain. Plasmids encoding Wzz mutant and WT PCP1a proteins conferring different Oag modal chain lengths were then expressed in the mutant background, and tested against purified colicin E2. Analysis of swab and spot sensitivity assays showed that strains expressing either S-type or long (L)-type Oag chains (16–28 Oag RUs) conferred greater resistance to colicin E2 compared with strains having very-short-type (2–8 Oag RUs), intermediate-short-type (8–14 Oag RUs) or VL-type (>80 Oag RUs) Oag chains. These results suggest a novel role for LPS Oag chain length control that may have evolved due to selection pressure from colicins in the environment.
Funder
National Health and Medical Research Council of Australia
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献