Shigella flexneri remodeling and consumption of host lipids during infection

Author:

Ascari Alice12ORCID,Frölich Sonja13,Zang Maoge2,Tran Elizabeth N. H.1,Wilson Danny W.13,Morona Renato1ORCID,Eijkelkamp Bart A.2ORCID

Affiliation:

1. Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia

2. Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia

3. Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia

Abstract

ABSTRACT Shigella flexneri is a major cause of bacillary dysentery in the developing world, predominantly affecting the pediatric age group, with malnutrition being a common co-morbidity. Lipids are key nutritional components, and their abundance and composition are likely to influence the pathobiology of S. flexneri. S. flexneri expresses a plethora of polysaccharides on its cell surface, but how this hydrophilic surface layer influences S. flexneri interaction with hydrophobic host molecules, such as fatty acids and lipids, is not well understood. In this study, we sought to interrogate how this hydrophilic layer affects S. flexneri during its intracellular lifestyle and how lipid homeostasis changes in both the host and pathogen. We characterized changes in S. flexneri cell envelope composition and surface-associated glycolipids, in particular lipopolysaccharide (LPS), during different phases of infection. We found that a dynamic capacity in LPS expression is necessary for the pathogen to manage delicate interaction with host fatty acids and maintain optimum virulence. Additionally, through confocal immunofluorescent microscopy, coupled with transcriptional and lipid analyses, we demonstrate that S. flexneri induces major host lipid remodeling during infection, by hijacking host lipid homeostasis pathways to its own benefit. Finally, this study suggests that fatty acid supplementation can influence the persistence and magnitude of S. flexneri infection. This work provides novel insights into the potential roles of balanced and sufficient dietary fatty acid intake in protection against gastroenteric pathogen infection. IMPORTANCE Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri .

Funder

DHAC | National Health and Medical Research Council

Department of Education and Training | Australian Research Council

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3