Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions

Author:

Bhubhanil Sakkarin12,Chamsing Jareeya31,Sittipo Panida431,Chaoprasid Paweena431,Sukchawalit Rojana412,Mongkolsuk Skorn541

Affiliation:

1. Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand

2. Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand

3. Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand

4. Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand

5. Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

Agrobacterium tumefaciens membrane-bound ferritin (MbfA) is a member of the erythrin (Er)–vacuolar iron transport family. The MbfA protein has an Er or ferritin-like domain at its N terminus and has been predicted to have five transmembrane segments in its C-terminal region. Analysis of protein localization using PhoA and LacZ reporter proteins supported the view that the N-terminal di-iron site is located in the cytoplasm whilst the C-terminal end faces the periplasm. An A. tumefaciens mbfA mutant strain had 1.5-fold higher total iron content than the WT strain. Furthermore, multi-copy expression of mbfA reduced total iron content two- and threefold in WT and mbfA mutant backgrounds, respectively. These results suggest that MbfA may function as an iron exporter rather than an iron storage protein. The mbfA mutant showed 10-fold increased sensitivity to the iron-activated antibiotic streptonigrin, implying that the mutant had increased accumulation of intracellular free iron. Growth of the mbfA mutant was reduced in the presence of high iron under acidic conditions. The expression of mbfA was induced highly in cells grown in iron-replete medium at pH 5.5, further supporting the view that mbfA is involved in the response to iron under acidic conditions. A. tumefaciens MbfA may play a protective role against increased free iron in the cytoplasm through iron binding and export, thus preventing iron-induced toxicity via the Fenton reaction.

Funder

Thailand Research Fund

Chulabhorn Research Institute

Royal Golden Jubilee Scholarship

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3