Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens

Author:

Bhubhanil Sakkarin12,Niamyim Phettree12,Sukchawalit Rojana312,Mongkolsuk Skorn431

Affiliation:

1. Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand

2. Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand

3. Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand

4. Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

The Agrobacterium tumefaciens genome contains a cluster of genes that are predicted to encode Fe–S cluster assembly proteins, and this cluster is known as the sufS2BCDS1XA operon. sufS2 is the first gene in the operon, and it was inactivated to determine its physiological function. The sufS2 mutant exhibited a small colony phenotype, grew slower than the wild-type strain and was more sensitive to various oxidants including peroxide, organic hydroperoxide and superoxide. The sufS2 gene was negatively regulated by iron response regulator (Irr) and rhizobial iron regulator (RirA) under low and high iron conditions, respectively, and was inducible in response to oxidative stress. The oxidant-induced expression of sufS2 was controlled by Irr, RirA and an additional but not yet identified mechanism. sufS2 was required for RirA activity in the repression of a sufS2 promoter-lacZ fusion. RirA may use Fe–S as its cofactor. sufS2 disruption may cause a defect in the Fe–S supply and could thereby affect the RirA activity. The three conserved cysteine residues (C91, C99 and C105) in RirA were predicted to coordinate with the Fe–S cluster and were shown to be essential for RirA repression of the sufS2-lacZ fusion. These results suggested that sufS2 is important for the survival of A. tumefaciens.

Funder

Thailand Research Fund

the Chulabhorn Research Institute

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3