Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745

Author:

Diep Dzung B.1,Godager Linda1,Brede Dag1,Nes Ingolf F.1

Affiliation:

1. Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N1432 Aas, Norway

Abstract

The genome of Pediococcus pentosaceus ATCC 25745 contains a gene cluster that resembles a regulated bacteriocin system. The gene cluster has an operon-like structure consisting of a putative pediocin-like bacteriocin gene (termed penA) and a potential immunity gene (termed peiA). Genetic determinants involved in bacteriocin transport and regulation are also found in proximity to penA and peiA but the so-called accessory gene involved in transport and the inducer gene involved in regulation are missing. Consequently, this bacterium is a poor bacteriocin producer. To analyse the potency of the putative bacteriocin operon, the two genes penA-peiA were heterologously expressed in a Lactobacillus sakei host that contains the complete apparatus for gene activation, maturation and externalization of bacteriocins. It was demonstrated that the heterologous host expressing penA and peiA produced a strong bacteriocin activity; in addition, the host became immune to its own bacteriocin, identifying the gene pair penA-peiA as a potent bacteriocin system. The novel pediocin-like bacteriocin, termed penocin A, has an isotopic mass [M+H]+ of 4684.6 Da as determined by mass spectrometry; this value corresponds well to the expected size of the mature 42 aa peptide containing a disulfide bridge. The bacteriocin is heat-stable but protease-sensitive and has a calculated pI of 9.45. Penocin A has a relatively broad inhibition spectrum, including pathogenic Listeria and Clostridium species. Immediately upstream of the regulatory genes reside some features that resemble remnants of a disrupted inducer gene. This degenerate gene was restored and shown to encode a double-glycine leader-containing peptide. Furthermore, expression of the restored gene triggered high bacteriocin production in P. pentosaceus ATCC 25745, thus confirming its role as an inducer in the pen regulon.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3