Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane-associated proteome of Streptomyces coelicolor

Author:

Kim Dae-Wi12,Chater Keith F.2,Lee Kye-Joon1,Hesketh Andy2

Affiliation:

1. School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea

2. Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK

Abstract

Previous proteomic analyses of Streptomyces coelicolor by two-dimensional electrophoresis and protein mass fingerprinting focused on extracts from total cellular material. Here, the membrane-associated proteome of cultures grown in a liquid minimal medium was partially characterized. The products of some 120 genes were characterized from the membrane fraction, with 70 predicted to possess at least one transmembrane helix. A notably high proportion of ABC transporter systems was represented; the specific types detected provided a snapshot of the nutritional requirements of the mycelium. The membrane-associated proteins did not change very much in abundance in different phases of growth in liquid minimal medium. Identification of gene products not expected to be present in membrane protein extracts led to a reconsideration of the genome annotation in two cases, and supplemented scarce information on 11 hypothetical/conserved hypothetical proteins of unknown function. The wild-type membrane proteome was compared with that of a bldA mutant lacking the only tRNA capable of efficient translation of the rare UUA (leucine) codon. Such mutants are unaffected in vegetative growth but are defective in many aspects of secondary metabolism and morphological differentiation. There were a few clear changes in the membrane proteome of the mutant. In particular, two hypothetical proteins (SCO4244 and SCO4252) were completely absent from the bldA mutant, and this was associated with the TTA-containing regulatory gene SCO4263. Evidence for the control of a cluster of function-unknown genes by the SCO4263 regulator revealed a new aspect of the pleiotropic bldA phenotype.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3